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Unlike the approaches in [l-3] which treat wave fields over limited times, a technique is developed 

which enables one, using the principle of a limiting amplitude, to investigate the propagation and 

establishment of wave fields which are generated in a laminated ideally elastic medium with plane 

parallel boundaries of separation by the harmonic oscillations of the edges of a crack from an initial 

instant of time. The need to take account of all the components of the stress tensor outside of the crack 

in its plane is discussed. 

CONSIDER the excitation of wave fields in a bilaminar elastic medium under the action of 
harmonic stresses from an initial instant of time on the edge of a semi-infinite crack located in 
the plane of the boundary of separation of the media 
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Here x, z is a Cartesian system of coordinates with its origin in the plane of separation of the 
characteristic properties of the medium, 4 and pj are Lame parameters, pi are the densities of 
the lower (j = 1) and upper (j = 2) layers, wj, a& and a& are the displacement vector and the 
components of the stress tensor (normal and shear) in the jth layer, the connection between 
which is defined by Hooke’s law, and Au, Aw, Aa and AZ are the discontinuities in the 
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kinematic and dynamic properties in the plane of discontinuity (z = 0). It is assumed that the 
stresses ah and a;, are known in the plane of the crack (a = (x > 0, z = 0)). The formulation of 
the problem is closed by the condition of the decay of the perturbations at infinity. 

When Fourier and Laplace integral transforms are used, the original initial boundary-value 
problems (l)-(3) reduces, in the case when Acr = 0, AZ = 0, to a system of functional equations 
of the Wiener-Hopf type 

KAW+=S+tS--K,,(Z++Z-) 

GAU+-KAv=C,(T+tTT-), CYEE, Res>s120 

(4) 

where a and s are parameters of the Fourier and Laplace transforms respectively, E is the 
common strip of regularity of the functions occurring in (4) which contains the whole of the 
real axis a with the exception, perhaps, of a finite number of points, d is the abscissa of the 
convergence of the Laplace transform, S’, T', AW’ and AS, are the Fourier-Laplace images 
of the functions cr,, Q, Aw and Au, respectively, when (X > 0, z = 0), and S- and T- are the 
Fourier-Laplace images of the functions when {X c 0, z = 01. 

Here and henceforth, the plus and minus signs denote the regularity of the functions in the 
upper (E u {a : Ima > 0}) and lower (E u (a : Ima < 0)) half-planes. 

Green’s functions, which occur in the system of functional equations (4), are defined by 
different combinations of the functions Ai (i = 1, 2, . . . ,5) 
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By virtue of the uniqueness of the solution of the initial problem, Green’s functions (5) are 
single-valued, analytic functions which are even with respect to the set of variables and do not 
have any branch points in the complex planes a and S. In this case, their asymptotic behaviour 
for fixed s and I a I+ 00 is as follows: K, G = O(I a I), K,, Go = O(1). 
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Let us investigate the possibility of factorizing the function K in the form of a product. K is a 
meromorphic function of the variable a which has an event set of zeros a = a:(s) and poles 
a=~:@) when sED={OdRes<E=const, -c Ims CM}. To be specific, we shall assume 
that the plus or minus signs for the singularities being considered subsequently denote that 
they belong to the upper or lower half-planes, respectively. 

Let us show that such an approach is possible. Actually, by virtue of the evenness of K with 
respect to the set of variables, it is possible to fix the branches of the dispersion curves in such 
a manner that the above-mentioned separation of the dispersion sets is satisfied. 

We know that, when Re s = 0 and Ims = --o c 0, there are a finite number of real values 
(a=q:(--ia), m= 1, 2, . . . , M, w> 0) among the above-mentioned sets and an even set of 
complex values (a = rlL(-iw), m 2 M + 1, o > 0) It follows from the representation 

Q+,(S) ‘L qk(-iw) t i(av+m(-iw)/h)Res, m = 1,2,. . . ,M 

which holds in the strip D that the condition for fixing q:(s) in the upper half-plane 

(7) 

c,-’ =a7J+,(-iw)/aw>o, --<cd<= e-9 

is identical with the natural physical requirement of the positiveness of the group velocity C,,, 
of the corresponding mode. It is obvious that (8) corresponds to the choice of the odd branch 
of the dispersion curve and, at the same time, that the property, analogous to (7), of rl; 
belonging to the lower half-plane when m= 1, 2, . . . , M follows from the relationship 
71;(r) =-Us). 

A result, similar to that in [4], follows next from the principle of a limit amplitude but is 
obtained using the limiting-absorptions principle: q:(s), (S E D, M 3 M +l) do not pass across 
the real axis and, consequently, are fixed in the upper or lower half-plane, respectively. 

The dispersion set of zeros a = a:(s) also possess the properties considered above. 
Hence, on the basis of Weierstrass’ theorem, the representation for K, as well as for the new 

function L = As /As, in the form of infinite products holds, and, consequently, we have their 
factorization with respect to a in E K = K’K-, L = L’L-, s E D. Then, by using the Wiener- 
Hopf method, on the basis of the generalized Liouville theorem the images of the functions of 
the normal and shear stresses outside the crack in its plane can be represented in the form 
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Here N is the number of real zeros of the function K, and the coefficients AW+(qL) are 
defined as the solutions of a system of linear equations (S,,,, is the Kronecker delta) 

AAW=B, AW= ( AK’+($)];=, 
(11) 

A= la,,]/,,l, B= ib,,,Ifzl, b,=bi + bfp, 
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The construction of the stress functions in the plane of the 
the kinematic and dyna~c characteristics of the whole layer. 
ments, we derive 
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For simplicity, let us demonstrate the technique for the inversion of the integrals taking the 
particular example of a problem with a specified dis~ontinui~ in the normal stresses on the 
crack which neglects the presence of shear stresses in the plane of the crack outside of the 
crack. In this case, the normal stresses on the boundary of separation outside of the crack can 
be determined from the first functional equation (4) and the solutions (9)-(11) in Fourier- 
Laplace images as limiting values when T’, T- = 0 
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Tbe singularities of the integrand in the complex plane s are poles which lie, symmetrically 
with respect to the origin of coordinates, and on the imaginary axis 

s = -iw, s = a; (a), 7l; (u; (a)) = 01 

The inner integral is inverted by closure of the integration contour in the left half-plane of 
the complex parameter s (Re s < 0) with subsequent use of Jordan’s lemma. We have 
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It is seen from this representation that the function S-(a, t> does not have any sing~a~ties 
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on the real axis a. At the same time, each of the terms possesses one and the same poles which 
mutually cancel one another. Hence, in order to pass to term-by-term integration, it is 
necessary to deform the contour from the real axis into the complex plane close to these 
singularities. The same kind of deformation can be carried out using the principle of a limiting 
amplitude, that is, the decay of the solution when t + m which corresponds to the displacement 
of segments of the initial integration contour close to the negative poles into the upper half- 
plane a and the initial integration contour close to the positive poles into the lower half-plane. 
A similar deformation of a contour has been obtained in steady-state harmonic problems on 
the basis of the limiting amplitude principle [4]. 

The integral for the first sum in (14), which determines the steady-state contribution to the 
solution, is evaluated using the theory of residues by closure of the integration contour in the 
upper half-plane for x > 0. Fourier inversion of the second sum after term-by-term integration 
is carried out using contour integration and subsequent deformation of the contours into the 
upper or lower half-plane close to the poles of this integrand (14) taking account of the 
exponential-type decay of the functions in the plane of the space-time parameters x and t. This 
leads to a cancellation of the contribution from the corresponding mth mode in the domain 
I x I> C,,,?, where C,,, is the group velocity (8). The solution is finally represented in the form of 
an expansion with respect to the modes 
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We also obtain the remaining representations of the solutions, in a similar manner to (13)- 
(15), in the form of the sum of the solution of a problem with specified normal stresses in the 
domain of the crack (Problem 1, index S) and the solution for specified shear stresses in the 
domain of the discontinuity (Problem 2, index 2’). Hence 

w(x, z, t) = WS(X, z, t) + wT(x, z, 1) 

Uii (x, z, t) = {(x, z, t) + cJ;(x, z, t), 

In particular, in the case of Problem 1, we have for the 
the medium and the stresses outside the crack in its plane 
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We note that the function o$ is that defined in (15) as O&X, t). 
Analogous relatio~s~ps are obtained in the case of Problem 2. 
The singularities a= [i(--io) correspond to the set of zeros of the function A5 defined in (6). 

The set of singularities a = a,“(-iu) are represented in the form {a,“{-&)) = {a~X(-iw)}u 
(c&(-if@)}, where ai, and a$ correspond to zeros of the functions A1 and A,. Here 1, Nl and 
AC! (N = Nl+ N2) are the number of real values of C, a:: and a& respectively, at a fixed 
w > 0 and the group velocities of the corresponding modes are introduced by analogy with (8) 
using the formulae d: = ~~~(-~~~/~~, Q: = ~a~~(-~#)/~~, k = 1,2. 

The coefficients AW+($,) are determined from system (11) and, moreover, only the first 
term b,, is taken as the right-hand side in the case of Problem 1. In the case of Problem 2, the 
a~alogo~ c~fficients are deterred from (11) with the ~ght-hand side bmz. 

In the solution of Problem 1, the first terms with the index SS correspond to the solution in 
the special case which does not take account of the shear stresses beyond the discontinuity on 
its continuation while, in Problem 2, the terms with the index TT are the solution in the special 
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case when no account is taken of the normal stresses on the continuation of the discontinuity. 
Results of calculations of the amplitudes of the wave fields as a function of the deepening of 

the crack in Problem 1 allowing for the shear stresses on the continuation of the fracture line 
(the solid line) and without taking account of them (the dashed line) are presented in Figs l-3. 
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FIG. 3. 

The groups of curves 1 and 2 correspond to the vertical or tangential components of the 
displacements of the free surface above the fracture (Fig. 1) and outside of it (Fig. 2). Graphs 
of the amplitude functions of the normal stresses are shown in Fig. 3, where the dot-dash line 
corresponds to the shear stress function on the continuation of the fracture. 

The perturbation function is chosen in such a way that its Fourier image does not have any 
singularities on the real axis in the plane of the complex parameter IY; 

The following values of the parameters (in dimensionless form) were used in the calcu- 
lations 

o = 0.57; x = 1.33; 1= 2.33; C,$tS= 2.8571 

ctp/qp = 1.6; c,p/c,S= 5.0; n= 117 + 220 

The numerical analysis of this and other versions shows that failure to take account of shear 
stresses on the continuation of the fracture line in Problem 1 and the normal stresses in 
Problem 2 does not lead to any appreciable changes in the displacement field above the 
fracture but, outside of this domain, it can have an appreciable influence on the displacements 
of the surface and on the stresses on the continuation of the fracture. 
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